中图分类号 TH744.1

微型紫外光谱仪分析系统的研究

黄良坤1,2*,温泉1,2**,温志渝1,2,庾繁1,2,刘海涛2,洪明坚2,谢瑛珂1,2

1重庆大学新型微纳器件与系统技术国防重点学科实验室,重庆 400044;

²重庆大学微系统研究中心,重庆 400044

摘要 针对微型紫外光谱仪应用设计要求,开展了紫外光谱仪系统研究,完成了 IV 型光学系统设计。研制出在线 实时分析的微型紫外光谱仪,对样机主要参数的测试表明:其工作波长为 200~400 nm,分辨率达 0.31 nm,波长准 确性为±0.1 nm,信噪比为 507:1。通过 12 h 系统稳定性测试,结果表明该样机光谱波动小于 0.47%,达到了光谱 仪长期工作的稳定性要求。在 25 ℃的实验条件下通过 SO₂ 气体对光谱仪性能进行测试,基于差分吸收光谱技术 理论,完成了标准气体的差分吸收截面计算。通过连续24h对质量浓度为20~100 mg/m3的SO2进行测试,结果 表明光谱仪测试数据反演质量浓度的波动性小于1%,线性误差小于0.6%,最大示值误差为-0.56 mg/m³。

关键词 光谱学;紫外光谱仪; IV 型光学系统设计;差分吸收光谱技术; SO₂ 文献标志码 A

doi: 10.3788/LOP57.053003

Micro-Ultraviolet Spectrometer Analysis System

Huang Liangkun^{1,2*}, Wen Quan^{1,2**}, Wen Zhiyu^{1,2}, Yu Fan^{1,2}, Liu Haitao², Hong Mingjian², Xie Yingke^{1,2}

¹Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044, China;

² Microsystem Research Center, Chongging University, Chongging 400044, China

Abstract In this study, a micro-ultraviolet spectrometer with an IV-type optical system is designed, fabricated, and analyzed. The micro-ultraviolet spectrometer is effectively validated for online real-time analysis applications. The main parameters of the prototype include a wavelength range of 200-400 nm, resolution of 0.31 nm, wavelength accuracy of ± 0.1 nm, and a signal-to-noise ratio of 507:1. The experimental results of a 12-h system stability test suggest that the spectral fluctuation is less than 0.47%, confirming the long-term stability of the spectrometer. Finally, the performance of the spectrometer is verified by measuring SO₂ gas at 25 °C. Based on the theory of differential absorption spectroscopy, a differential absorption cross section calculation of a standard gas is performed. The test results show that the inversion mass concentration of the spectrometer test data has a fluctuation of less than 1%, linearity error of less than 0.6%, and maximum indication error of -0.56 mg/m³ upon testing an SO₂ mass concentration of 20-100 mg/m³ for 24 h.

spectroscopy; ultraviolet spectrometer; IV-type optical system design; differential absorption Key words spectroscopy technology; SO₂

OCIS codes 300.6540; 050.1950; 120.6200

1 引 言

紫外光是指波长为 200~400 nm 的电磁波^[1]。

通过分析紫外光对特定物质的响应特性,配合光 谱吸收算法,能实现对特定物质的定性定量分析, 具有分析样品用量少、分析速度快及结果稳定性

收稿日期: 2019-08-01; 修回日期: 2019-08-07; 录用日期: 2019-09-06

基金项目:国家重点研发计划(2018YFF01011200)、国家自然科学基金(61327002)、中央高校基本科研业务费专项 (2019CDCG0007)

^{*} E-mail: huang_lk@cqu.edu.cn; ** E-mail: Quan.Wen@enas.fraunhofer.de

高等优点,被广泛应用于制药、医疗卫生、化学化 工、食品、环保、农业等领域^[2-4]。传统紫外光谱分 析仪由镀膜光学器件、平面光栅及线阵探测器构 成。然而,由于紫外光的独有特性,普通镀膜光学 器件存在紫外光谱波段反射率较低的问题,同时, 平面光栅的衍射效率低且光程增长,导致光强衰 减,光谱仪的信噪比降低,因此本文提出一种基于 全息凹面光栅的紫外光谱分析仪。其采用全息凹 面光栅同时完成入射光的分光和成像,减少了反 射镜的数量,大大缩短了系统光程,有效提高了微 型紫外光谱分析仪的信噪比。

目前,国内外学者已对微型化紫外光谱仪进 行了大量研究^[5-8]。日本 HAMAMATSU 公司在 紫外波段主推 TM 系列,该系列采用透射式光栅 和非制冷-背照式 CCD 图像传感器,其分辨率和灵 敏度都很高,但是透射式光栅的透过率和衍射效 率均较低且制作难度大。美国海洋光学研制的 Maya 系列微型紫外光谱仪,采用非对称式光学结 构设计,其量子转换率高达90%,分辨率高达 0.1 nm,非常适用于高灵敏度的应用场合。但是 C-T结构需要更多的光学器件,导致装调难度更 大,并且这些产品的价格较高,难以推广。国内紫 外光谱仪产品主要来自上海复享公司,该公司的 FX2000 是紫外光谱仪的典型代表,但是存在光谱 数据输出不稳定、信噪比较低的缺点。本文研制 的微型紫外光谱仪采用全息凹面光栅,可集分光、 成像于一体,能有效减小系统像差,提高信噪比和 分辨率,降低仪器成本,满足市场上对于便携式、 可在线实时监测、便于二次开发的紫外光谱分析 仪的要求。本文针对烟气分析仪的特定需求,分 析 SO₂ 在 200~400 nm 波段的吸收特性,将全息 凹面光栅作为核心光学器件,结合实际应用环境 搭建了紫外光谱分析仪测试样机和测试平台,并 进行相关性能测试和应用实验。

2 微型紫外光谱仪分析系统工作原理 及实现

2.1 紫外光谱分析系统工作原理

紫外光谱探测技术用于测定紫外光区的光, 紫外光的特性是波长短、能量高,当污染物吸收光 时,其分子中的电子发生转移,由此产生的分子吸 收光谱称为紫外吸收光谱,该光谱是电子跃迁光 谱,吸收波长范围为 200~400 nm,由于紫外吸收 光谱吸收的能量大于红外吸收光谱,很容易检测 出吸收的变化,因此可用于结构鉴定和定量分析^[9]。紫外光谱探测技术的一般工作过程如图1 所示。先用光谱仪测量样品数据,这些数据反映 样品的组成或物态信息;然后通过标准的参比方 法测得样本的组成或物态信息,再把所测得的两 组数据采用相关计量建立校正模型;最后通过对 未知样品光谱测定和建立的校正模型进行快速预 测分析出其成分或性质。

Fig. 1 Schematic of analyzing process

2.2 光学系统设计与仿真

光学系统是光谱分析仪器的核心部件,直接 决定分析仪器的性能。微型光谱仪中最常见的光 学结构是基于平面光栅 C-T型和基于全息凹面光 栅型。C-T型制作成本低,结构紧凑,但光学器件 较多,装调过程较复杂。全息凹面光栅型光谱范 围窄,但其凹面光栅集分光、成像于一体,无鬼线、 低杂散光、高信噪比、小像差,所需器件少,装调容 易^[10-12]。为此,本文提出一种便携集成式微型紫 外光谱仪光学系统方案,采用 IV 型光学系统设 计。该光谱仪主要应用于工业烟气检测,初始波 段拟定为 200~400 nm,根据凹面光栅的消像差设 计原理得出凹面光栅表面任意一点的光程函数, 其按级数展开可表示为

$$F = F_{00} + yF_{10} + \frac{1}{2}y^{2}F_{20} + \frac{1}{2}z^{2}F_{02} + \frac{1}{2}y^{3}F_{30} + \frac{1}{2}yz^{3}F_{12} + \frac{1}{8}y^{4}F_{40} + \frac{1}{4}y^{2}z^{2}F_{22} + \frac{1}{8}z^{4}F_{04} + \cdots, \quad (1)$$

式中:*F_{ij}*为全息凹面光栅的像差系数;*y*、*z*表示光 瞳函数。*F_{ij}*可表示为

$$F_{ij} = M_{ij} + (m\lambda/\lambda_0) H_{ij}, \qquad (2)$$

式中:λ₀为记录波长;λ为光栅的使用波长;M_{ii}为 入射臂和出射臂的相关坐标;H_{ii}为全息光栅的参 数,它只与记录点的坐标有关。在实际的光学设计 中受到像差的影响,应尽量减小相应的参数以达到 消像差的目的。因此,在设计时应以*F_{ii}*的绝对值 (3)

最小为原则,即在光谱范围 λ_{min}≪λ≪λ_{max}内,使像差 系数 *F*²_{ij} 的积分值最小^[13],可以表示为

$$F_{ij}^{2} = \int_{\beta_{\lambda_{\min}}}^{\beta_{\lambda_{\max}}} [F_{ij}(\alpha,\beta,r_{A},r_{B},\delta,\gamma,r_{C},r_{D},R)]^{2} d\beta,$$

式中: α 、 β 、 r_A 、 r_B 分别为入射角、衍射角、入射臂长、 出射臂长; δ 、 γ 、 r_c 、 r_D 为记录光源的参数;R为四 面光栅的曲率半径。通过不同波长计算出入射臂 长、出射臂长、记录光源的坐标。确定光路结构后, 需进一步优化像差,将边界条件代入 ZEMAX 软件 的宏命令中优化得出如图 2 所示的结构。优化后入 射臂长为 60.67 mm,出射臂长为 77.43 mm。取+1 级衍射,从 300 nm 处的狭缝像点列图可以看出,其 分辨率可达 0.2 nm。最终的记录光源坐标为(0,0, -101.5)、(0, - 31.1, - 120.1),记录 波长 为 325 nm。

该光学系统主要由入射狭缝、全息凹面光栅、平 面反射镜、阵列探测器4部分构成,当光源发出的复 合光经入射狭缝进入全息凹面光栅,经分光聚焦后, 不同波长的单色光经平面反射镜反射后依次聚焦排 列在平直的像面位置,最终由线阵 CCD 探测器获取 光谱信息^[14]。在结构设计方面,在探测器前和狭缝 后采用限束孔以减少杂散光,提升系统零件的可加 工性。根据减少仪器内壁二次反射、仪器装调的便 捷性及可靠性等要求,综合考虑各方面因素,完成了 系统结构设计。图 3 为光谱分析系统结构示意图。

在电路设计方面,数据采集系统和传输系统主要由 A/D 转换器、FPGA 和 USB 2.0 通道组成,光电探测器采用的是滨松 S11151-2048 线阵式 CCD 探测器。电路的主要设计思路是通过 USB 2.0 芯片给数据采集系统一个采集控制命令,存入 FPGA 的控制寄存器中。FPGA 根据该命令向 A/D 转换

Fig. 3 Schematic of spectral analysis system configuration 器发出相应控制信号, A/D转换器在 FPGA 的逻辑 控制下,把模拟信号转换成数字信号,并将指定通道 的采样数据存入缓存区,最后发送到上位机。

数据采集和分析是系统的软件部分,围绕数据 库模块将系统划分为五大模块。其中,光谱采集模 块是通过 USB 2.0 协议把硬件的光谱信号读入到 上位机中;光谱处理模块是对读取的光谱信号进行 平滑、滤波等基本处理;光谱标定模块首先实现峰值 定位功能,其次通过读取汞灯特征谱线的特征峰所 对应线阵 CCD 探测器的每一个像元,采用多项式拟 合的标定方法对紫外光谱进行标定;图像显示和数 据存储模块主要是采集模块通过 USB 将光谱数据 以字节的形式传递到上位机以后,为了方便用户分 析处理,将标定前后的光谱信息显示出来,并且将光 谱信号数据按照用户需要以数据文档的形式存储到 用户选择的文件夹。

3 微型紫外光谱仪测试结果及分析

3.1 样机参数

研制出的微型紫外光谱仪样机的主要参数如下: $f = 33.11 \text{ mm}, f/D = 1.66(D 为入射光瞳直径),狭缝宽度为50 <math>\mu$ m,光谱范围为200~400 nm,分辨率达0.31 nm,系统稳定性<0.4%,波长准确性为±0.1 nm,尺寸大小为80 mm×80 mm×45 mm。 3.2 波长范围

光谱仪的波长范围是指其有效的工作光谱范 围,主要取决于仪器的光路设计、探测器的类型和光 源的选择。采用 Avantes 公司生产的氘灯光源,考 虑到全息凹面光栅的消像差设计和衍射效率问题, 其工作波长选为 200~400 nm。为了检测样机的波 长范围,选用 220 nm 和 400 nm 的窄带滤光片,利 用本课题组研制的专用光谱分析软件,在积分时间 为 3.4 ms 的情况下得到的光谱如图 4(a)所示,标定 后的光谱如图 4(b)所示。

Fig. 4 Spectral range and calibration results of the spectrometer prototype. (a) Wavelength range;

(b) calibrated spectral curve

3.3 分辨率

光谱仪的分辨率即能分辨的最小波长差,主要 取决于光学系统设计;对于采用光栅分光的仪器,分 辨率的大小还与狭缝的设计有关。光谱分辨率测试 方法主要有临近光谱峰值特征法和光谱半峰全宽 (FWMH)测试法,前者是通过标准光源特征谱线的 相邻波长差值进行衡量:后者是取线状光谱半峰全 宽处波长的差值来表征光谱分辨率大小。在样机的 测试过程中,将发射波长为 600 µm 的石英光纤连 接到汞灯光源和宽度为 40 μm 的入射狭缝,样机测 试汞灯光谱如图 5 所示,所得谱线与 Avantes 公司 的汞灯标准谱线完全一致。从图 5 可以看出,汞灯 的6根特征谱线中,波长为296.73 nm 和334.15 nm 处的半峰全宽分别为 0.34 nm 和 0.41 nm。同时, 296.42 nm和 296.73 nm、312.07 nm 和 312.57 nm、 365.01 nm 和 365.46 nm 处三组谱线分别相隔 0.31 nm、0.50 nm、0.45 nm,并且能被清楚地分辨 开,因此足以证明本样机的光谱分辨率达到了小于 0.6 nm 的水平且最高分辨率可达 0.31 nm。

3.4 波长准确性

光谱仪的波长准确性是指仪器测定标准物质某 一谱峰的波长与该谱峰的标定波长之差,标定的精 度对光谱仪的准确性有直接影响。光谱仪工作时, 探测器的每一个像元都会输出一个波长及与之对应 的光强信号,采用像元与波长的对应关系,利用多项 式拟合的标定方法实现光谱标定^[15-16]。对汞灯光源 进行标定,将标定后的光谱与光源的标准谱线进行 对比,结果如表1所示。可以看到,紫外光谱仪的波 长准确性为±0.1 nm,已达到了产业化的要求。

表1 波长准确性测试数据

Table 1 Test data of wavelength accuracy

Theoretical	Measured	Relative
wavelength /nm	wavelength /nm	error /nm
253.65	253.58	-0.07
265.37	265.32	-0.05
275.28	275.28	0
289.36	289.29	-0.07
296.73	296.64	-0.09
302.15	302.11	-0.04
312.57	312.67	0.1
334.15	334.08	-0.07
365.01	365.04	0.03

3.5 信噪比

信噪比是光谱信号与噪声的比值,反映光谱在 连续采集中光谱信号的波动性,是仪器的基本指标 之一,通常用光谱信号的平均值与标准差的比值进 行衡量。采用氘灯光源照明,选取最大光强的像元 点 240.08 nm 处每隔 20 ms 采集一次,一共采集 1000次,计算出采样值的平均值 π 和标准差σ,则 信噪比计算公式为

$$R_{\rm sn} = \frac{\bar{x}}{\sigma}, \qquad (4)$$

计算得出光谱分析仪的信噪比为 507:1。

3.6 系统稳定性

光谱仪的系统稳定性是指在实验条件不变的情况下,每隔一段时间采集波长输出信号的变化情况。

光谱仪的系统稳定性主要由光源、入射光纤和采集 电路决定。光谱仪的稳定性直接决定了测试分析数 据时的准确性。为了验证光谱分析仪的系统稳定 性,以氘灯光源照明,并把中心波长为 306 nm 的干 涉滤光片置于光源与光纤的连接处,待光谱分析仪 稳定后,开始上电测试。在室温条件下,积分时间取 3.4 ms,每隔1h采集1次,共采样12次,中心波长 306 nm处的干涉滤光片的特征谱线如图 6(a)所示,根据峰值绘制的散点图如图 6(b)所示,通过计 算得出最大波动不超过 0.47%。从图 6 可以看出, 光谱特征谱线的重复性好且光谱仪已经达到了稳定 状态。

图 6 系统稳定性测试结果。(a) 12 组测试数据;(b) 12 h 测试数据的散点图 Fig. 6 Test results of system stability. (a) 12 sets of test data chart; (b) 12 h test data scatter chart

4 应用实验

紫外光谱仪的重要应用之一是对工业烟气排放 中 SO₂ 和 NO 的质量浓度进行定量分析,实验采用 川仪分析仪器公司生产的气体分析仪作为辅助测试 系统,如图 7(a)所示,并利用差分吸收光谱技术

Fig. 7 Gas detection and analysis system. (a) Physical picture of test system; (b) deuterium lampultraviolet spectrometer measurement system (DOAS)实现对 SO₂ 质量浓度的验证^[17]。其原理 是利用待测气体的质量浓度和紫外光谱波段的光强 值存在的一定数学关系,通过这种关系可以检测出 待测气体的种类和气体的浓度值。将透射光强与原 始光强值进行对比,得出对比吸收度,利用多项式拟 合出一条吸收度慢变化曲线,然后从吸收度中减去 慢变化曲线,便可得到差分吸收度的信号,将测量得 到的差分吸收度与现实中测量得到的标准分子的吸 收截面进行拟合,最终得到待测气体的质量浓度测 量值。图 7(b)为测量系统示意图,氘灯光源出射光 通过光纤入射到准直镜准直后进入气室,入射光通 过待测气体经聚焦镜聚焦并通过光纤进入紫外光谱 仪,光谱仪通过 USB 总线将数据上传至上位机光谱 分析软件进行分析处理。

为观察紫外光谱仪的吸收光谱,首先通入 N₂ 清除气室中的杂质气体,然后再通入 1000 mg/m³ 的标准 SO₂ 气体直至 N₂ 气体排尽,SO₂ 气体吸收 光谱如图 8 所示。根据朗伯-比尔定律推导出标准 差分吸收截面公式为^[18]

$$\sigma(\lambda) = \ln\left[\frac{I_{0}(\lambda) - I_{dark}(\lambda)}{I(\lambda) - I_{dark}(\lambda)} - I_{p}(\lambda)\right] / \left(\frac{c}{L}\right),$$
(5)

式中: $I_{dark}(\lambda)$ 为仪器暗噪声; $I_{0}(\lambda)$ 为未通入待测气体时的原始光强; $I(\lambda)$ 为经过待测气体吸收后的光强; $I_{p}(\lambda)$ 为将 $\frac{I_{0}(\lambda) - I_{dark}(\lambda)}{I(\lambda) - I_{dark}(\lambda)}$ 进行多项式拟合后得到低频部分;c为标准待测气体的质量浓度;L为气室中光路的长度。综合考虑光谱仪的测量精度和范

围,选择 215~238 nm、290~315 nm 波段进行截面 计算和滤波处理,得到的差分吸收截面如图 8 所示。 对连续24 h测试20~100 mg/m³质量浓度下的

- 图 8 SO₂ 气体吸收光谱以及 215~238 nm 和 290~311 nm 滤波后的 SO₂ 差分吸收截面
- Fig. 8 Absorption spectrum of SO₂ gas and filtered SO₂ differential absorption cross section at 215–238 nm and 290–311 nm

Table 2

光谱数据进行质量浓度反演,结果如表 2 所示。可以 看到,光谱仪测试数据反演质量浓度值的波动性小于 1%,线性误差小于 0.6%,最大示值误差为 -0.56 mg/m³。因此样机满足工业应用中质量浓度 为 100 mg/m³测试线性误差在 1%以内的使用要求。

5 结 论

微型紫外光谱分析仪是烟气分析仪的技术核心, 本文研制的基于全息凹面光栅的在线实时分析微型 紫外光谱分析仪采用 IV 型光学系统设计和全息凹面 光栅减小光学系统像差、缩小仪器体积、降低仪器成 本,并且能准确地采集 200~400 nm 波段的连续光 谱,分辨率可达 0.31 nm。各项指标表明该紫外光谱 分析仪已达到稳定的工作状态,并完成差分吸收光谱 技术在紫外光谱仪分析测试中的应用研究。通过实 验初步验证了紫外光谱分析仪在 SO₂ 气体质量浓度 测试中的性能,测试数据和分析结果显示,研制出的 紫外光谱仪各项性能指标已基本达到实用化水平;但 是数据处理算法还有待完善,典型的模型建立和光谱 仪的应用场景测试是下一步工作的重点。

表 2 紫外光谱仪 S	SO ₂ 气体浓度测试结果
-------------	--------------------------

Measurement results of SO2 gas mass concentration in UV spectrometer

Gas	Actual concentration /	Max value /	Min value /	Avg value /	Wave / %	Error / %
concentration	$(mg \cdot m^{-3})$	$(mg \cdot m^{-3})$	$(mg \cdot m^{-3})$	$(mg \cdot m^{-3})$		
Concentration of SO ₂	20	20.2678	19.4669	20.0034	0.80	0.53
	30	30.0814	29.4796	29.8016	0.60	0.52
	50	50.3914	49.7273	49.9489	0.66	0.39
	80	80.1215	79.6022	79.9303	0.52	0.40
	100	100.3695	99.4389	99.9356	0.93	0.56
Concentration of N ₂		0.3905	-0.3312	0.028	0.72	0.39

参考文献

[1] Wu G A. Spectral instrument design [M]. Beijing: Science Press, 1978.
吴国安.光谱仪器设计 [M].北京:科学出版社,

1978.

- [2] Martelo-Vidal M J, Domínguez-Agis F, Vázquez M. Ultraviolet/visible/near-infrared spectral analysis and chemometric tools for the discrimination of wines between subzones inside a controlled designation of origin: a case study of Rías Baixas [J]. Australian Journal of Grape and Wine Research, 2013, 19(1): 62-67.
- [3] Huang P J, Wang K, Hou D B, et al. *In situ* detection of water quality contamination events based on signal complexity analysis using online ultraviolet-

visible spectral sensor[J]. Applied Optics, 2017, 56 (22): 6317-6323.

- [4] Li D, Feng W W, Chen L X, et al. An on-line monitoring system for nitrate in seawater based on UV spectrum [J]. Spectroscopy and Spectral Analysis, 2016, 36(2): 442-444
 李丹, 冯巍巍,陈令新,等. 一种基于紫外光谱法的 海水硝酸盐在线监测系统[J].光谱学与光谱分析, 2016, 36(2): 442-444
- [5] Zhang B, Wen Z Y. Development and performance test of a micro fiber spectrometer[J]. Semiconductor Optoelectronics, 2007, 28(1): 147-150.
 张波,温志渝.微型光纤光谱仪的研制及性能测试[J].半导体光电, 2007, 28(1): 147-150.
- [6] Xu T, Lü L J. Optimization of optical system of extreme ultra-violet spectrometer [J]. Acta Optica

Sinica, 2010, 30(9): 2646-2651.

徐挺,吕丽军.极紫外光谱仪光学系统的优化设计 [J].光学学报,2010,30(9):2646-2651.

- [7] Guo X L. Design of micro UV spectrometer based on area CCD [D]. Hangzhou: Zhejiang University, 2011.
 郭晓龙.基于面阵 CCD 的微型紫外光谱仪设计[D].
 杭州:浙江大学, 2011.
- [8] Wang G D, Xia G, Li Z Y, et al. Design and key technology research of portable UV-VIS spectrometer
 [J]. Opto-Electronic Engineering, 2018, 45(10): 73-84.
 王国栋,夏果,李志远,等.便携式紫外-可见光谱仪

设计及关键技术研究[J].光电工程,2018,45(10): 73-84.

[9] Yang J. The application and development of UV detection technology[J]. Optoelectronic Technology, 2011, 31(4): 274-278.
杨杰.紫外探测技术的应用与进展[J].光电子技术,

2011,31(4): 274-278.

- [10] Luo B, Wen Z Y, Wen Z Q, et al. Design of concave grating for ultraviolet-spectrum[J]. Spectroscopy and Spectral Analysis, 2012, 32(6): 1717-1721.
 罗彪,温志渝,温中泉,等.面向微小型紫外光谱仪的凹面光栅模拟与设计[J].光谱学与光谱分析, 2012,32(6): 1717-1721.
- [11] Hao A H, He F T, Li L B, et al. Design of widefield and flat-spectrum holographic concave grating spectrometer[J]. Acta Optica Sinica, 2018, 38(2): 0230003.

郝爱花, 贺锋涛, 李立波, 等. 宽场平谱面全息凹面 光栅光谱仪的设计[J]. 光学学报, 2018, 38(2): 0230003.

[12] Xiang C C, Zhou C H. Dispersion equation and symmetry of grating modes [J]. Acta Optica Sinica, 2018, 38(9): 0905001. 项长铖,周常河.光栅模式的色散方程与对称性[J]. 光学学报,2018,38(9):0905001.

- [13] Noda H, Namioka T, Seya M. Geometric theory of the grating [J]. Journal of the Optical Society of America, 1974, 64(8): 1031-1036.
- [14] Ma J, Xiao X Z, Lang J W, et al. Study on selection of CCD detector of space-borne hyper-spectral imager
 [J]. Acta Optica Sinica, 2014, 34(10): 1011001.
 马骏,肖喜中,郎均慰,等. 航空推扫高光谱成像仪
 CCD 探测器选型研究[J].光学学报, 2014,34(10): 1011001.
- [15] JuJW, NieJH, ZhangZH, et al. Research on wavelength calibration of linear-CCD UV spectrometer[J]. Infrared, 2017, 38(6): 24-29.
 鞠军委,聂建华,张志辉,等.线阵CCD紫外光谱仪 的波长定标研究[J].红外, 2017, 38(6): 24-29.
- [16] Dong N N, Wang F Cui J J, et al. A new wavelength calibration method for extreme ultraviolet monochromator [J]. Acta Optica Sinica, 2014, 34 (s1): s104002.
 董宁宁, 王帆, 崔锦江, 等. 一种极紫外单色仪波长 定标新方法[J]. 光学学报, 2014, 34(s1): s104002.
- [17] Liu W Q, Cui Z C, Liu J G, et al. High sensitive differential optical absorption spectroscopy (DOAS) for air quality monitoring [J]. Optical Technique, 2005, 31(2): 288-291.
 刘文清,崔志成,刘建国,等. 空气质量监测的高灵 敏差分吸收光谱学技术[J].光学技术, 2005, 31(2): 288-291.
- [18] LiSW, XiePH, LiYJ, et al. Wavelet transform based differential optical absorption spectroscopy data processing[J]. Acta Optica Sinica, 2006, 26(11): 1601-1604.
 李素文,谢品华,李玉金,等.基于小波变换的差分

吸收光谱数据处理方法[J].光学学报,2006,26 (11):1601-1604.